skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bittig, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2023 is an update of the previous version, GLODAPv2.2022 (Lauvset et al., 2022). The major changes are as follows: data from 23 new cruises were added. In addition, a number of changes were made to the data included in GLODAPv2.2022. GLODAPv2.2023 includes measurements from more than 1.4 million water samples from the global oceans collected on 1108 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on the systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 23 new cruises were derived by comparing those data with the data from the 1085 quality-controlled cruises in the GLODAPv2.2022 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2), chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA National Centers for Environmental Information (NCEI), which also provides access to the merged data product. This is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/zyrq-ht66 (Lauvset et al., 2023). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2023 methods and provides a broad overview of the secondary quality control procedures and results. 
    more » « less
  2. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC) are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The global net uptake of CO2 by the ocean (SOCEAN, called the ocean sink) is estimated with global ocean biogeochemistry models and observation-based fCO2 products (fCO2 is the fugacity of CO2). The global net uptake of CO2 by the land (SLAND, called the land sink) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The sum of all sources and sinks results in the carbon budget imbalance (BIM), a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2023, EFOS increased by 1.3 % relative to 2022, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (10.3 ± 0.5 GtC yr−1 when the cement carbonation sink is not included), and ELUC was 1.0 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.9 GtC yr−1 (40.6 ± 3.2 GtCO2 yr−1). Also, for 2023, GATM was 5.9 ± 0.2 GtC yr−1 (2.79 ± 0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 2.3 ± 1.0 GtC yr−1, with a near-zero BIM (−0.02 GtC yr−1). The global atmospheric CO2 concentration averaged over 2023 reached 419.31 ± 0.1 ppm. Preliminary data for 2024 suggest an increase in EFOS relative to 2023 of +0.8 % (−0.2 % to 1.7 %) globally and an atmospheric CO2 concentration increase by 2.87 ppm, reaching 422.45 ppm, 52 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2023, with a near-zero overall budget imbalance, although discrepancies of up to around 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the mean ocean sink. This living-data update documents changes in methods and datasets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2024 (Friedlingstein et al., 2024). 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  3. Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. Methods: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. Results: The new tests are able to automatically flag most of the “bad” BBP profiles from the raw dataset. Conclusions: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms. 
    more » « less
  4. Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. Methods: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. Results: The new tests are able to automatically flag most of the “bad” BBP profiles from the raw dataset. Conclusions: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms. 
    more » « less
  5. null (Ed.)
  6. Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical bottle data, with an emphasis on seawater inorganic carbonchemistry and related variables determined through chemical analysis ofseawater samples. GLODAPv2.2022 is an update of the previous version,GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: datafrom 96 new cruises were added, data coverage was extended until 2021, andfor the first time we performed secondary quality control on all sulfurhexafluoride (SF6) data. In addition, a number of changes were made todata included in GLODAPv2.2021. These changes affect specifically theSF6 data, which are now subjected to secondary quality control, andcarbon data measured on board the RV Knorr in the Indian Ocean in 1994–1995 whichare now adjusted using certified reference material (CRM) measurements made at the time. GLODAPv2.2022includes measurements from almost 1.4 million water samples from the globaloceans collected on 1085 cruises. The data for the now 13 GLODAP corevariables (salinity, oxygen, nitrate, silicate, phosphate, dissolvedinorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4,and SF6) have undergone extensive quality control with a focus onsystematic evaluation of bias. The data are available in two formats: (i) assubmitted by the data originator but converted to World Ocean CirculationExperiment (WOCE) exchange format and (ii) as a merged data product withadjustments applied to minimize bias. For the present annual update,adjustments for the 96 new cruises were derived by comparing those data withthe data from the 989 quality-controlled cruises in the GLODAPv2.2021 dataproduct using crossover analysis. SF6 data from all cruises wereevaluated by comparison with CFC-12 data measured on the same cruises. Fornutrients and ocean carbon dioxide (CO2) chemistry comparisons toestimates based on empirical algorithms provided additional context foradjustment decisions. The adjustments that we applied are intended to removepotential biases from errors related to measurement, calibration, and datahandling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete CO2 fugacity(fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at theOcean Carbon and Acidification Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/GLODAPv2_2022/, last access: 15 August 2022). This site also provides access to themerged data product, which is provided as a single global file and as fourregional ones – the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/1f4w-0t92 (Lauvset et al.,2022). These bias-adjusted product files also include significant ancillaryand approximated data, which were obtained by interpolation of, orcalculation from, measured data. This living data update documents theGLODAPv2.2022 methods and provides a broad overview of the secondary qualitycontrol procedures and results. 
    more » « less
  7. In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO 2 DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO 2 DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO 2 DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO 2 DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O 2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O 2 will improve our understanding of the ocean O 2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO 2 DAT will allow scientists to fully harness the increasing volumes of O 2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO 2 DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO 2 DAT is proposed highlighting the efforts needed (e.g., in terms of human resources). 
    more » « less
  8. null (Ed.)
    Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical data, with an emphasis on seawater inorganic carbon chemistryand related variables determined through chemical analysis of seawatersamples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019.The major changes are data from 106 new cruises added, extension of timecoverage to 2019, and the inclusion of available (also for historicalcruises) discrete fugacity of CO2 (fCO2) values in the mergedproduct files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. Thedata for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate,phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12,CFC-113, and CCl4) have undergone extensive quality control with afocus on systematic evaluation of bias. The data are available in twoformats: (i) as submitted by the data originator but updated to WOCEexchange format and (ii) as a merged data product with adjustments appliedto minimize bias. These adjustments were derived by comparing the data fromthe 106 new cruises with the data from the 840 quality-controlled cruises ofthe GLODAPv2.2019 data product using crossover analysis. Comparisons toempirical algorithm estimates provided additional context for adjustmentdecisions; this is new to this version. The adjustments are intended toremove potential biases from errors related to measurement, calibration, anddata-handling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete fCO2, were notsubjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at theOcean Carbon Data System of NOAA NCEI(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, lastaccess: 20 June 2020). This site also provides access to the merged dataproduct, which is provided as a single global file and as four regional ones– the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). Thesebias-adjusted product files also include significant ancillary andapproximated data. These were obtained by interpolation of, or calculationfrom, measured data. This living data update documents the GLODAPv2.2020methods and provides a broad overview of the secondary quality controlprocedures and results. 
    more » « less